首页    期刊浏览 2024年12月05日 星期四
登录注册

文章基本信息

  • 标题:In situ measurements of snow surface roughness using a laser profiler
  • 本地全文:下载
  • 作者:P. Lacroix ; B. Legrésy ; K. Langley
  • 期刊名称:Journal of Glaciology
  • 印刷版ISSN:0022-1430
  • 电子版ISSN:1727-5652
  • 出版年度:2008
  • 卷号:54
  • 期号:187
  • 页码:753-762
  • DOI:10.3189/002214308786570863
  • 出版社:Cambridge University Press
  • 摘要:The snow surface roughness at centimetre and millimetre scales is an important parameter related to wind transport, snowdrifts, snowfall, snowmelt and snow grain size. Knowledge of the snow surface roughness is also of high interest for analyzing the signal from radar sensors such as SAR, altimeters and scatterometers. Unfortunately, this parameter has seldom been measured over snow surfaces. The techniques used to measure the roughness of other surfaces, such as agricultural or sand soils, are difficult to implement in polar regions because of the harsh climatic conditions. In this paper we develop a device based on a laser profiler coupled with a GPS receiver on board a snowmobile. This instrumentation was tested successfully in midre Lovénbreen, Svalbard, in April 2006. It allowed us to generate profiles of 3 km sections of the snow-covered glacier surface. Because of the motion of the snowmobile, the roughness signal is mixed with the snowmobile signal. We use a distance/frequency analysis (the empirical mode decomposition) to filter the signal. This method allows us to recover the snow surface structures of wavelengths between 4 and 50 cm with amplitudes of >1 mm. Finally, the roughness parameters of snow surfaces are retrieved. The snow surface roughness is found to be dependent on the scales of the observations. The retrieved RMS of the height distribution is found to vary between 0.5 and 9.2 mm, and the correlation length is found to be between 0.6 and 46 cm. This range of measurements is particularly well adapted to the analysis of GHz radar response on snow surfaces.
国家哲学社会科学文献中心版权所有