首页    期刊浏览 2025年02月28日 星期五
登录注册

文章基本信息

  • 标题:Local response of a glacier to annual filling and drainage of an ice-marginal lake
  • 本地全文:下载
  • 作者:Joseph S. Walder ; Dennis C. Trabant ; Michelle Cunico
  • 期刊名称:Journal of Glaciology
  • 印刷版ISSN:0022-1430
  • 电子版ISSN:1727-5652
  • 出版年度:2006
  • 卷号:52
  • 期号:178
  • 页码:440-450
  • DOI:10.3189/172756506781828610
  • 出版社:Cambridge University Press
  • 摘要:Ice-marginal Hidden Creek Lake, Alaska, USA, outbursts annually over the course of 2–3 days. As the lake fills, survey targets on the surface of the ‘ice dam’ (the glacier adjacent to the lake) move obliquely to the ice margin and rise substantially. As the lake drains, ice motion speeds up, becomes nearly perpendicular to the face of the ice dam, and the ice surface drops. Vertical movement of the ice dam probably reflects growth and decay of a wedge of water beneath the ice dam, in line with established ideas about jökulhlaup mechanics. However, the distribution of vertical ice movement, with a narrow (50–100 m wide) zone where the uplift rate decreases by 90%, cannot be explained by invoking flexure of the ice dam in a fashion analogous to tidal flexure of a floating glacier tongue or ice shelf. Rather, the zone of large uplift-rate gradient is a fault zone: ice-dam deformation is dominated by movement along high-angle faults that cut the ice dam through its entire thickness, with the sense of fault slip reversing as the lake drains. Survey targets spanning the zone of steep uplift gradient move relative to one another in a nearly reversible fashion as the lake fills and drains. The horizontal strain rate also undergoes a reversal across this zone, being compressional as the lake fills, but extensional as the lake drains. Frictional resistance to fault-block motion probably accounts for the fact that lake level falls measurably before the onset of accelerated horizontal motion and vertical downdrop. As the overall fault pattern is the same from year to year, even though ice is lost by calving, the faults must be regularly regenerated, probably by linkage of surface and bottom crevasses as ice is advected toward the lake basin.
国家哲学社会科学文献中心版权所有