首页    期刊浏览 2024年12月14日 星期六
登录注册

文章基本信息

  • 标题:Titanium(IV) Oxide Modified with Activated Carbon and Ultrasounds for Caffeine Photodegradation: Adsorption Isotherm and Kinetics Study
  • 本地全文:下载
  • 作者:Piotr Zawadzki ; Edyta Kudlek ; Mariusz Dudziak
  • 期刊名称:Inżynieria Ekologiczna
  • 印刷版ISSN:2081-139X
  • 电子版ISSN:2392-0629
  • 出版年度:2020
  • 卷号:21
  • 期号:8
  • 页码:137-145
  • DOI:10.12911/22998993/126985
  • 出版社:Polish Society of Ecological Engineering (PTIE)
  • 摘要:In this paper the adsorption and photodegradation of caffeine (CAF) using modified photocatalysts were studied.The laboratory synthesis method of commercial titanium(IV) oxide, activated carbon and ultrasound was proposed.The adsorption effect of caffeine was described by the Langmuir and Freundlich isotherms.The effectiveness of CAF photocatalytic decomposition was evaluated as well as the parameters of the pseudo-first-order and pseudo-second-order reaction kinetics were estimated.It was determined that the caffeine adsorption fit both the Langmuir and Freundlich isotherms.The value of the experimental maximum adsorption capacity (qe) was the highest for TiO2 modified with activated carbon and ultrasounds (TiO2/AC/Us).The highest removal degree (over 99.0%) of CAF was observed for titanium(IV) oxide modified with activated carbon.Both photodegradation kinetics models show good or very good fit; however, the pseudo-first-order model shows better fit to the experimental data (R2 = 97-99%).After 20 minutes of the photodegradation process, the following efficiency order was determined: TiO2 < TiO2/AC < TiO2/AC/US.The results indicate that the combination of TiO2, activated carbon and ultrasound is an interesting alternative for the efficient degradation of caffeine, comparing to commercial TiO2.
  • 关键词:ultrasound; kinetics; TiO2; photocatalysis; adsorption; activated carbon; caffeine; modified photocatalysts
国家哲学社会科学文献中心版权所有