首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Mapping snow depth within a tundra ecosystem using multiscale observations and Bayesian methods
  • 本地全文:下载
  • 作者:Haruko M. Wainwright ; Anna K. Liljedahl ; Baptiste Dafflon
  • 期刊名称:The Cryosphere
  • 印刷版ISSN:1994-0416
  • 电子版ISSN:1994-0424
  • 出版年度:2017
  • 卷号:11
  • 期号:2
  • 页码:857-875
  • DOI:10.5194/tc-11-857-2017
  • 出版社:Copernicus Publications
  • 摘要:This paper compares and integrates different strategies to characterize the variability of end-of-winter snow depth and its relationship to topography in ice-wedge polygon tundra of Arctic Alaska. Snow depth was measured using in situ snow depth probes and estimated using ground-penetrating radar (GPR) surveys and the photogrammetric detection and ranging (phodar) technique with an unmanned aerial system (UAS). We found that GPR data provided high-precision estimates of snow depth (RMSE  =  2.9 cm), with a spatial sampling of 10 cm along transects. Phodar-based approaches provided snow depth estimates in a less laborious manner compared to GPR and probing, while yielding a high precision (RMSE  =  6.0 cm) and a fine spatial sampling (4 cm × 4 cm). We then investigated the spatial variability of snow depth and its correlation to micro- and macrotopography using the snow-free lidar digital elevation map (DEM) and the wavelet approach. We found that the end-of-winter snow depth was highly variable over short (several meter) distances, and the variability was correlated with microtopography. Microtopographic lows (i.e., troughs and centers of low-centered polygons) were filled in with snow, which resulted in a smooth and even snow surface following macrotopography. We developed and implemented a Bayesian approach to integrate the snow-free lidar DEM and multiscale measurements (probe and GPR) as well as the topographic correlation for estimating snow depth over the landscape. Our approach led to high-precision estimates of snow depth (RMSE  =  6.0 cm), at 0.5 m resolution and over the lidar domain (750 m × 700 m).
国家哲学社会科学文献中心版权所有