首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:A New Transformed t-test for Skewed Data: A Goodness-of-fit Approach
  • 本地全文:下载
  • 作者:Khairul Islam ; Tanweer Shapla
  • 期刊名称:International Journal of Statistics and Probability
  • 印刷版ISSN:1927-7032
  • 电子版ISSN:1927-7040
  • 出版年度:2020
  • 卷号:9
  • 期号:5
  • 页码:30-39
  • DOI:10.5539/ijsp.v9n5p30
  • 出版社:Canadian Center of Science and Education
  • 摘要:A new transformed two-sample t -test has been proposed for testing equality of two population means for skewed distributions by means of a univariate normal goodness of fit to the combined sample. The small sample performance of the proposed test is compared with untransformed t-test and the non-parametric analogue of t-test via Wilcoxon rank sum test using real-life examples and simulation from skewed distributions with varying values of skewness, empirically. It reveals that the proposed new test is appropriate for estimating the level of significance and is more powerful than the untransformed t-test and the Wilcoxon rank sum test for skewed distributions.
  • 关键词:goodness-of-fit;power;transformation;two-sample t-test;Wilcoxon test
国家哲学社会科学文献中心版权所有