摘要:The study solves a system of finite difference equations for flexible shallow concrete shells while taking into account the nonlinear deformations. All stiffness properties of the shell are taken as variables, i.e. , stiffness surface and through-thickness stiffness. Differential equations under consideration were evaluated in the form of algebraic equations with the finite element method. For a reinforced shell, a system of 98 equations on a 8×8 grid was established, which was next solved with the approximation method from the nonlinear plasticity theory. A test case involved computing a 1×1 shallow shell taking into account the nonlinear properties of concrete. With nonlinear equations for the concrete creep taken as constitutive, equations for the quasi-static shell motion under constant load were derived. The resultant equations were written in a differential form and the problem of solving these differential equations was then reduced to the solving of the Cauchy problem. The numerical solution to this problem allows describing the stress-strain state of the shell at each point of the shell grid within a specified time interval.