出版社:National Defense University Barbaros Naval Sciences and Engineering Institute Journal of Naval Science and Engineering
摘要:The purpose of this study is to optimize multilayer perceptron (MLP) classifier and find optimal ECG features to achieve better classification for automated sleep apnea detection.k-fold crossvalidation technique was employed for classification of apneaic events on the apnea database of the DREAMS project containing 12 whole-night Polysomnography (PSG) recordings previously examined by an expert.To achieve the best possible performance with MLP,the correlation feature selection method was utilized.The performance for apnea event diagnosis after optimization of the features and the classifier resulted almost 10% in accuracy,%7 in sensitivity and %13 in specificity.
其他摘要:Bu çalışmanın amacı otomatik uyku apnesi tanımlamasında daha iyi sınıflandırma sağlamak amacıyla çok katmanlı algılayıcı sınıflandırıcısı ile kullanılacak EKG özniteliklerinin optimizasyonunu gerçekleştirmektir.Uzman hekim tarafından değerlendirilmiş 12 h