首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Optimizing Ontology Alignment through Improved NSGA-II
  • 本地全文:下载
  • 作者:Yikun Huang ; Xingsi Xue ; Chao Jiang
  • 期刊名称:Discrete Dynamics in Nature and Society
  • 印刷版ISSN:1026-0226
  • 电子版ISSN:1607-887X
  • 出版年度:2020
  • 卷号:2020
  • 页码:1-8
  • DOI:10.1155/2020/8586058
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Over the past decades, a large number of complex optimization problems have been widely addressed through multiobjective evolutionary algorithms (MOEAs), and the knee solutions of the Pareto front (PF) are most likely to be fitting for the decision maker (DM) without any user preferences. This work investigates the ontology matching problem, which is a challenge in the semantic web (SW) domain. Due to the complex heterogeneity between two different ontologies, it is arduous to get an excellent alignment that meets all DMs’ demands. To this end, a popular MOEA, i.e., nondominated sorting genetic algorithm (NSGA-II), is investigated to address the ontology matching problem, which outputs the knee solutions in the PF to meet diverse DMs’ requirements. In this study, for further enhancing the performance of NSGA-II, we propose to incorporate into NSGA-II’s evolutionary process the monkey king evolution algorithm (MKE) as the local search algorithm. The improved NSGA-II (iNSGA-II) is able to better converge to the real Pareto optimum region and ameliorate the quality of the solution. The experiment uses the famous benchmark given by the ontology alignment evaluation initiative (OAEI) to assess the performance of iNSGA-II, and the experiment results present that iNSGA-II is able to seek out preferable alignments than OAEI’s participators and NSGA-II-based ontology matching technique.
国家哲学社会科学文献中心版权所有