首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Solutions of two fractional q -integro-differential equations under sum and integral boundary value conditions on a time scale
  • 本地全文:下载
  • 作者:Jehad Alzabut ; Behnam Mohammadaliee ; Mohammad Esmael Samei
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2020
  • 卷号:2020
  • 期号:1
  • 页码:1-33
  • DOI:10.1186/s13662-020-02766-y
  • 出版社:Hindawi Publishing Corporation
  • 摘要:In this manuscript, by using the Caputo and Riemann–Liouville type fractional q-derivatives, we consider two fractional q-integro-differential equations of the forms ${}^{c}\mathcal{D}_{q}^{\alpha }[x](t) + w_) (t, x(t), \varphi (x(t)) )=0$ and $$ {}^{c}\mathcal{D}_{q}^{\alpha }[x](t) = w_, \biggl( t, x(t), \int _(^{t} x(r) \,\mathrm{d}r, {}^{c} \mathcal{D}_{q}^{\alpha }[x](t) \biggr) $$ for $t \in [0,l]$ under sum and integral boundary value conditions on a time scale $\mathbb{T}_{t_(}= \{ t: t =t_(q^{n}\}\cup \{0\}$ for $n\in \mathbb{N}$ where $t_( \in \mathbb{R}$ and q in $(0,1)$. By employing the Banach contraction principle, sufficient conditions are established to ensure the existence of solutions for the addressed equations. Examples involving algorithms and illustrated graphs are presented to demonstrate the validity of our theoretical findings.
  • 关键词:Sum boundary value conditions;Caputo q-derivative;Riemann–Liouville q-derivative;Integral boundary value conditions;
国家哲学社会科学文献中心版权所有