首页    期刊浏览 2024年12月13日 星期五
登录注册

文章基本信息

  • 标题:Logistic Growth Modeling with Markov Chain Monte Carlo Estimation
  • 本地全文:下载
  • 作者:Choi, Jaehwa ; Chen, Jinsong ; Harring, Jeffrey R.
  • 期刊名称:Journal of Modern Applied Statistical Methods
  • 出版年度:2019
  • 卷号:18
  • 期号:1
  • 页码:22-39
  • DOI:10.22237/jmasm/1556669820
  • 出版社:Wayne State University
  • 摘要:A new growth modeling approach is proposed to can fit inherently nonlinear (i.e., logistic) function without constraint nor reparameterization. A simulation study is employed to investigate the feasibility and performance of a Markov chain Monte Carlo method within Bayesian estimation framework to estimate a fully random version of a logistic growth curve model under manipulated conditions such as the number and timing of measurement occasions and sample sizes.
  • 关键词:Growth modeling; latent growth modeling; nonlinear growth models; logistic functions; Markov chain Monte Carlo; Bayesian inference
国家哲学社会科学文献中心版权所有