首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Thermus oshimai JL-2 and T. thermophilus JL-18 genome analysis illuminates pathways for carbon, nitrogen, and sulfur cycling
  • 本地全文:下载
  • 作者:Senthil K. Murugapiran ; Marcel Huntemann ; Chia-Lin Wei
  • 期刊名称:Environmental Microbiome
  • 印刷版ISSN:2524-6372
  • 出版年度:2013
  • 卷号:7
  • 期号:3
  • 页码:449-468
  • DOI:10.4056/sigs.3667269
  • 摘要:The complete genomes of Thermus oshimai JL-2 and T. thermophilus JL-18 each consist of a circular chromosome, 2.07 Mb and 1.9 Mb, respectively, and two plasmids ranging from 0.27 Mb to 57.2 kb. Comparison of the T. thermophilus JL-18 chromosome with those from other strains of T. thermophilus revealed a high degree of synteny, whereas the megaplasmids from the same strains were highly plastic. The T. oshimai JL-2 chromosome and megaplasmids shared little or no synteny with other sequenced Thermus strains. Phylogenomic analyses using a concatenated set of conserved proteins confirmed the phylogenetic and taxonomic assignments based on 16S rRNA phylogenetics. Both chromosomes encode a complete glycolysis, tricarboxylic acid (TCA) cycle, and pentose phosphate pathway plus glucosidases, glycosidases, proteases, and peptidases, highlighting highly versatile heterotrophic capabilities. Megaplasmids of both strains contained a gene cluster encoding enzymes predicted to catalyze the sequential reduction of nitrate to nitrous oxide; however, the nitrous oxide reductase required for the terminal step in denitrification was absent, consistent with their incomplete denitrification phenotypes. A sox gene cluster was identified in both chromosomes, suggesting a mode of chemolithotrophy. In addition, nrf and psr gene clusters in T. oshmai JL-2 suggest respiratory nitrite ammonification and polysulfide reduction as possible modes of anaerobic respiration.
  • 关键词:Thermus;Thermus oshimai;Thermus thermophilus;thermophiles;hot springs;denitrification;nitrous oxide;Great Basin
国家哲学社会科学文献中心版权所有