首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Tracking Poisson Parameter for Non-Stationary Discontinuous Time Series with Taylor’s Abnormal Fluctuation Scaling
  • 本地全文:下载
  • 作者:Gen Sakoda ; Hideki Takayasu ; Misako Takayasu
  • 期刊名称:Stats
  • 电子版ISSN:2571-905X
  • 出版年度:2019
  • 卷号:2
  • 期号:1
  • 页码:55-69
  • DOI:10.3390/stats2010005
  • 出版社:MDPI AG
  • 摘要:We propose a parameter estimation method for non-stationary Poisson time series with the abnormal fluctuation scaling, known as Taylor’s law. By introducing the effect of Taylor’s fluctuation scaling into the State Space Model with the Particle Filter, the underlying Poisson parameter’s time evolution is estimated correctly from given non-stationary time series data with abnormally large fluctuations. We also developed a discontinuity detection method which enables tracking the Poisson parameter even for time series including sudden discontinuous jumps. As an example of application of this new general method, we analyzed Point-of-Sales data in convenience stores to estimate change of probability of purchase of commodities under fluctuating number of potential customers. The effectiveness of our method for Poisson time series with non-stationarity, large discontinuities and Taylor’s fluctuation scaling is verified by artificial and actual time series.
  • 关键词:non-stationarity; Poisson process; Taylor’s fluctuation scaling; Particle Filter; Point Of Sales non-stationarity ; Poisson process ; Taylor’s fluctuation scaling ; Particle Filter ; Point Of Sales
国家哲学社会科学文献中心版权所有