期刊名称:MUST: Journal of Mathematics Education, Science and Technology
印刷版ISSN:2541-6057
电子版ISSN:2541-4674
出版年度:2018
卷号:3
期号:1
页码:46-56
出版社:UMSurabaya Publishing
摘要:Suatu aliran sungai menentukan prediksi debit sungai sulit, biasanya nilai yang digunakan sebagai patokan adalah hasil pantauan tinggi muka air. Pada bulan Juli 2016, luapan sungai Bengawan Solo mengakibatkan banjir di kawasan Solo Timur. Hal ini disebabkan karena tinggi muka air pada pos pemantauan Jurug menembus level 10. Oleh karena itu prediksi nilai tinggi muka air diperlukan sebagai upaya peringatan dini banjir. Pengukuran tinggi muka air sungai Bengawan Solo pada setiap pos pemantauan dilakukan setiap hari. Data tinggi muka air merupakan data runtun waktu. Salah satu metode peramalan data runtun waktu adalah Autoregressive Integrated Moving Average (ARIMA), model ini memiliki asumsi homoskedastisitas atau variansi eror tetap. Tetapi apabila variansi eror berubah-ubah maka model yang digunakan adalah model Generalized Autoregressive Conditional Heteroscedasticity (GARCH). Penelitian ini menggunakan 60 data dari bulan Januari – Februari 2017. Data tersebut terbukti stasioner berdasarkan nilai ADF 0,0036, oleh karena itu model ARIMA dapat digunakan. Berdasarkan pola korelogram, ACF dan PACF terpotong setelah lag pertama, hal ini menunjukan tinggi muka air sungai periode tersebut dapat dimodelkan dengan AR(1), ARMA (1,1), dan ARIMA(1,1,1).Berdasarkan perbandingan nilai MAPE ketiga model nilai terendah adalah model ARMA(1,1), yaitu 0,668384 yang artinya tingkat kesalahan terhadap prediksi model ARMA(1,1) adalah 66,8384%. Begitu hal nya dengan nilai MSE ketiga model, nilai terendah pada model ARMA(1,1) yaitu 0,7729 artinya memiliki variansi model yang lebih kecil, mampu memberikan hasil yang lebih konsisten dibandingkan model AR(1) dan ARIMA(1,1,1) yaitu 1,060288 dan 0,996585.
关键词:model ARIMA;tinggi muka air sungai bengawan solo