首页    期刊浏览 2024年12月05日 星期四
登录注册

文章基本信息

  • 标题:Fibrous smart material: adaptive, low–energy, real–time responsive interior environments
  • 本地全文:下载
  • 作者:Nimish Biloria ; Javid Jooshesh
  • 期刊名称:Spool
  • 印刷版ISSN:2215-0897
  • 电子版ISSN:2215-0900
  • 出版年度:2017
  • 卷号:4
  • 期号:2
  • 页码:23-31
  • DOI:10.7480/spool.2017.2.1921
  • 出版社:TU Delft Open
  • 摘要:The project is an inter-disciplinary initiative for the ‘designed engineering’ of heterogeneous fibres with variable material behaviors to create real-time responsive interior environments (furniture systems). These smart furniture systems will embody properties of real-time adaptive temperature control, real-time structural adaptability and real-time physiological support of the human body. These properties shall be fully self-regulated (devoid of external power sources) via engineering multi-layered fibre compositions, which can sense the forces exerted by the human body and accordingly alter their physical properties. The scale of operation is chosen deliberately, considering the time-span of one year within which we will produce a fully operational 1:1 physical prototype and scientific material-research guidelines. A research through design approach with 3 iterations shall be adopted in this research: working on the yarn (U Twente + EURECAT), textile (TUE) and product (TUD). Each iteration will consist of the development of a prototype, the creation of future usage scenarios + business possibilities, and a workshop to envision future requirements. In this project, prototypes and material output will be co-designed with material scientists, architects, textile and industrial designers and will be used to assess 1) design challenges, 2) business opportunities, and 3) technical feasibility of scalable multi-performative interior systems for applications such as healthcare and future office environments.
  • 其他摘要:The project is an inter-disciplinary initiative for the ‘designed engineering’ of heterogeneous fibres with variable material behaviors to create real-time responsive interior environments (furniture systems). These smart furniture systems will embody properties of real-time adaptive temperature control, real-time structural adaptability and real-time physiological support of the human body. These properties shall be fully self-regulated (devoid of external power sources) via engineering multi-layered fibre compositions, which can sense the forces exerted by the human body and accordingly alter their physical properties. The scale of operation is chosen deliberately, considering the time-span of one year within which we will produce a fully operational 1:1 physical prototype and scientific material-research guidelines. A research through design approach with 3 iterations shall be adopted in this research: working on the yarn (U Twente + EURECAT), textile (TUE) and product (TUD). Each iteration will consist of the development of a prototype, the creation of future usage scenarios + business possibilities, and a workshop to envision future requirements. In this project, prototypes and material output will be co-designed with material scientists, architects, textile and industrial designers and will be used to assess 1) design challenges, 2) business opportunities, and 3) technical feasibility of scalable multi-performative interior systems for applications such as healthcare and future office environments.
  • 关键词:heterogeneous fibres; smart furniture systems; mutli-layered fibre compositions; real-time structural adaptability
国家哲学社会科学文献中心版权所有