期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
印刷版ISSN:2158-107X
电子版ISSN:2156-5570
出版年度:2020
卷号:11
期号:1
页码:707-713
出版社:Science and Information Society (SAI)
摘要:Crowd analysis is receiving much attention from research community due to its widespread importance in public safety and security. In order to automatically understand crowd dynamics, it is imperative to detect and segment crowd from the background. Crowd detection and segmentation serve as pre-processing step in most crowd analysis applications, for example, crowd tracking, behavior understanding and anomaly detection. Intuitively, the crowd regions can be extracted using background modeling or using motion cues. However, these model accumulate many false positives when the crowd is static. In this paper, we propose a novel framework that automatically detects and segments crowd by integrating appearance features from multiple sources. We evaluate our proposed framework using challenging images with varying crowd densities, camera viewpoints and pedestrian appearances. From qualitative analysis, we observe that the proposed framework work perform well by precisely segmenting crowd in complex scenes.