首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Target Tracking and Classification Using Compressive Measurements of MWIR and LWIR Coded Aperture Cameras
  • 本地全文:下载
  • 作者:Chiman Kwan ; Bryan Chou ; Jonathan Yang
  • 期刊名称:Journal of Signal and Information Processing
  • 印刷版ISSN:2159-4465
  • 电子版ISSN:2159-4481
  • 出版年度:2019
  • 卷号:10
  • 期号:3
  • 页码:73-95
  • DOI:10.4236/jsip.2019.103006
  • 出版社:Scientific Research Publishing
  • 摘要:Pixel-wise Code Exposure (PCE) camera is one type of compressive sensing camera that has low power consumption and high compression ratio. Moreover, a PCE camera can control individual pixel exposure time that can enable high dynamic range. Conventional approaches of using PCE camera involve a time consuming and lossy process to reconstruct the original frames and then use those frames for target tracking and classification. In this paper, we present a deep learning approach that directly performs target tracking and classification in the compressive measurement domain without any frame reconstruction. Our approach has two parts: tracking and classification. The tracking has been done using YOLO (You Only Look Once) and the classification is achieved using Residual Network (ResNet). Extensive experiments using mid-wave infrared (MWIR) and long-wave infrared (LWIR) videos demonstrated the efficacy of our proposed approach..
  • 关键词:Target Tracking;Classification;Compressive Sensing;MWIR;LWIR;YOLO;ResNet;Infrared Videos
国家哲学社会科学文献中心版权所有