摘要:Landslide is one of the potential disasters that can take life and material. A way to reduce disaster risk in slopes is to improve slope stability. A challenge in improving slope stability is how to make soil retaining walls that are simple, quickly built, and workable in the process. This research focuses on laboratory tests of gravity, segmental, and pre-cast retaining walls in sands. The tested models are slopes with different segmental, pre-cast, gravity walls made of un-reinforced concrete for static loads. The slope failure patterns were observed with their load variations. There are two wall models segmental. Each segmental wall observed a collapse pattern that occurred behind the wall. Static loading is carried out step by step until collapse occurs in the segmental wall. Observations and defects are carried out during the load process until the segmental wall collapses. This research shows that segmental pre-cast retaining walls with specific models and sizes can be selected to support certainly given loads to prevent slope failure.
其他摘要:Landslide is one of the potential disasters that can take life and material. A way to reduce disaster risk in slopes is to improve slope stability. A challenge in improving slope stability is how to make soil retaining walls that are simple, quickly built, and workable in the process. This research focuses on laboratory tests of gravity, segmental, and pre-cast retaining walls in sands. The tested models are slopes with different segmental, pre-cast, gravity walls made of un-reinforced concrete for static loads. The slope failure patterns were observed with their load variations. There are two wall models segmental. Each segmental wall observed a collapse pattern that occurred behind the wall. Static loading is carried out step by step until collapse occurs in the segmental wall. Observations and defects are carried out during the load process until the segmental wall collapses. This research shows that segmental pre-cast retaining walls with specific models and sizes can be selected to support certainly given loads to prevent slope failure.