摘要:Aboveground forest biomass estimation is an integral component for climate change, carbon stocks assessment, biodiversity and forest health. LiDAR (Light Detection And Ranging), specifically NASA's Laser Vegetation Imaging Sensor (LVIS), PALSAR (Phased Array type L-band Synthetic Aperture Radar), and Landsat data have been previously used in biomass estimation with promising results when used individually. In this manuscript all three products are jointly utilized for the first time to assess their importance for deciduous biomass estimation. Results indicate that LVIS inputs are ranked as most important followed by PALSAR inputs. Particularly for PALSAR, scenes acquired in May and August were ranked higher compared to other months.