期刊名称:Journal of King Saud University @?C Computer and Information Sciences
印刷版ISSN:1319-1578
出版年度:2019
页码:1-12
DOI:10.1016/j.jksuci.2019.07.012
出版社:Elsevier
摘要:Existing scanners produce paper images with different types of deformations such as noise, rotation and shear. These deformations affect the accuracy of the fingerprinting the document images, which entails utilizing advanced feature extraction operators. Existing feature extractor such as the Uniform Local Binary Patterns (ULBP) has been found to be limited in dealing with the global view of the texture and neglecting useful information about the images. This article presents an Automated Paper Fingerprinting (APF) method that deploys a combination approach for Gabor Filters (GF) and Uniform Local Binary Patterns (ULBP) called the GFULBP operator to cater for both local and global image information during the feature extraction process for higher texture classification accuracy. The APF method is evaluated by a standard dataset of 306 blank paper images derived from pre-existing scanner image dataset from Universiti Kebangsaan Malaysia (UKM) with properties ranges from 50 DPI, 100 DPI, and 150 DPI respectively. The images are captured by a flatbed scanner with 50 DPI, 100 DPI, and 150 DPI resolutions. Each image is represented by four patches that are segmented from specific locations of the image. The test results of the APF show that GFULBP is able to outperform the ULBP alone by 30.68% when the GF has a 5 scale and π/2 orientation degree. This work finds that the integration of Gabor filters and ULBP significantly enhances the feature extraction quality and fingerprinting accuracy.