摘要:Extremely serious traffic crashes, defined as having a death toll of two and greater than two, have become a serious safety concern on urban roadways in Louisiana. This study examined the different contributing factors of these crashes to determine significant trends and patterns. We collected traffic crash data from Louisiana during the period of 2013 to 2017 and found that a total of 72 extremely serious crashes (around 2% of all traffic fatalities) occurred on Louisiana urban roadway networks. As crash data contain an enormous list of contributing factors, there was an issue of ‘more features than data points’ in solving the research problem. Most of these variables are categorial in nature. We selected a dimension reduction tool called Taxicab Correspondence Analysis (TCA) to investigate the complex interaction between multiple factors under a two-dimensional map. Findings of the study reveal several key clusters of attributes that show patterns of association between different crash attributes. The conclusions of this study are exploratory, and the results can help in better visualizing the association between key attributes of crashes. The findings have potentials in designing suitable countermeasures to reduce extremely serious crashes.