摘要:Muscle force generated during shortening is instantaneously increased after active stretch. This phenomenon is called as stretch-shortening cycle (SSC) effect. It has been suggested that residual force enhancement contributes to the SSC effect. If so, the magnitude of SSC effect should be larger in the longer muscle length condition, because the residual force enhancement is prominent in the long muscle length condition. This hypothesis was examined by performing the SSC in the short and long muscle length conditions. Skinned fibers obtained from rabbit soleus (N = 20) were used in this study. To calculate the magnitude of SSC effect, the SSC trial (isometric-eccentric-concentric-isometric) and the control trial (isometric-concentric-isometric) were conducted in the short (within the range of 2.4 to 2.7 μm) and long muscle (within the range of 3.0 to 3.3 μm). The magnitude of SSC effect was calculated as the relative increase in the mechanical work attained during the shortening phase between control and SSC trials. As a result, the magnitude of SSC effect was significantly larger in the long (176.8 ± 18.1%) than in the short muscle length condition (157.4 ± 8.5%) (p < 0.001). This result supports our hypothesis that the magnitude of SSC effect is larger in the longer muscle length condition, possibly due to the larger magnitude of residual force enhancement.