首页    期刊浏览 2024年12月05日 星期四
登录注册

文章基本信息

  • 标题:Automated tumour budding quantification by machine learning augments TNM staging in muscle-invasive bladder cancer prognosis
  • 本地全文:下载
  • 作者:Nicolas Brieu ; Christos G. Gavriel ; Ines P. Nearchou
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2019
  • 卷号:9
  • 期号:1
  • 页码:1-11
  • DOI:10.1038/s41598-019-41595-2
  • 出版社:Springer Nature
  • 摘要:Tumour budding has been described as an independent prognostic feature in several tumour types. We report for the first time the relationship between tumour budding and survival evaluated in patients with muscle invasive bladder cancer. A machine learning-based methodology was applied to accurately quantify tumour buds across immunofluorescence labelled whole slide images from 100 muscle invasive bladder cancer patients. Furthermore, tumour budding was found to be correlated to TNM (p = 0.00089) and pT (p = 0.0078) staging. A novel classification and regression tree model was constructed to stratify all stage II, III, and IV patients into three new staging criteria based on disease specific survival. For the stratification of non-metastatic patients into high or low risk of disease specific death, our decision tree model reported that tumour budding was the most significant feature (HR = 2.59, p = 0.0091), and no clinical feature was utilised to categorise these patients. Our findings demonstrate that tumour budding, quantified using automated image analysis provides prognostic value for muscle invasive bladder cancer patients and a better model fit than TNM staging.
国家哲学社会科学文献中心版权所有