首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:Non-Gaussian models of diffusion weighted imaging for detection and characterization of prostate cancer: a systematic review and meta-analysis
  • 本地全文:下载
  • 作者:V. Brancato ; C. Cavaliere ; M. Salvatore
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2019
  • 卷号:9
  • 期号:1
  • 页码:1-15
  • DOI:10.1038/s41598-019-53350-8
  • 出版社:Springer Nature
  • 摘要:The importance of Diffusion Weighted Imaging (DWI) in prostate cancer (PCa) diagnosis have been widely handled in literature. In the last decade, due to the mono-exponential model limitations, several studies investigated non-Gaussian DWI models and their utility in PCa diagnosis. Since their results were often inconsistent and conflicting, we performed a systematic review of studies from 2012 examining the most commonly used Non-Gaussian DWI models for PCa detection and characterization. A meta-analysis was conducted to assess the ability of each Non-Gaussian model to detect PCa lesions and distinguish between low and intermediate/high grade lesions. Weighted mean differences and 95% confidence intervals were calculated and the heterogeneity was estimated using the I 2 statistic. 29 studies were selected for the systematic review, whose results showed inconsistence and an unclear idea about the actual usefulness and the added value of the Non-Gaussian model parameters. 12 studies were considered in the meta-analyses, which showed statistical significance for several non-Gaussian parameters for PCa detection, and to a lesser extent for PCa characterization. Our findings showed that Non-Gaussian model parameters may potentially play a role in the detection and characterization of PCa but further studies are required to identify a standardized DWI acquisition protocol for PCa diagnosis.
国家哲学社会科学文献中心版权所有