首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Differentially Methylated Super-Enhancers Regulate Target Gene Expression in Human Cancer
  • 本地全文:下载
  • 作者:Emily L. Flam ; Ludmila Danilova ; Dylan Z. Kelley
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2019
  • 卷号:9
  • 期号:1
  • 页码:1-11
  • DOI:10.1038/s41598-019-51018-x
  • 出版社:Springer Nature
  • 摘要:Current literature suggests that epigenetically regulated super-enhancers (SEs) are drivers of aberrant gene expression in cancers. Many tumor types are still missing chromatin data to define cancer-specific SEs and their role in carcinogenesis. In this work, we develop a simple pipeline, which can utilize chromatin data from etiologically similar tumors to discover tissue-specific SEs and their target genes using gene expression and DNA methylation data. As an example, we applied our pipeline to human papillomavirus-related oropharyngeal squamous cell carcinoma (HPV + OPSCC). This tumor type is characterized by abundant gene expression changes, which cannot be explained by genetic alterations alone. Chromatin data are still limited for this disease, so we used 3627 SE elements from public domain data for closely related tissues, including normal and tumor lung, and cervical cancer cell lines. We integrated the available DNA methylation and gene expression data for HPV + OPSCC samples to filter the candidate SEs to identify functional SEs and their affected targets, which are essential for cancer development. Overall, we found 159 differentially methylated SEs, including 87 SEs that actively regulate expression of 150 nearby genes (211 SE-gene pairs) in HPV + OPSCC. Of these, 132 SE-gene pairs were validated in a related TCGA cohort. Pathway analysis revealed that the SE-regulated genes were associated with pathways known to regulate nasopharyngeal, breast, melanoma, and bladder carcinogenesis and are regulated by the epigenetic landscape in those cancers. Thus, we propose that gene expression in HPV + OPSCC may be controlled by epigenetic alterations in SE elements, which are common between related tissues. Our pipeline can utilize a diversity of data inputs and can be further adapted to SE analysis of diseased and non-diseased tissues from different organisms.
国家哲学社会科学文献中心版权所有