首页    期刊浏览 2024年12月05日 星期四
登录注册

文章基本信息

  • 标题:Balanced, bi-planar magnetic field and field gradient coils for field compensation in wearable magnetoencephalography
  • 本地全文:下载
  • 作者:Niall Holmes ; Tim M. Tierney ; James Leggett
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2019
  • 卷号:9
  • 期号:1
  • 页码:1-15
  • DOI:10.1038/s41598-019-50697-w
  • 出版社:Springer Nature
  • 摘要:To allow wearable magnetoencephalography (MEG) recordings to be made on unconstrained subjects the spatially inhomogeneous remnant magnetic field inside the magnetically shielded room (MSR) must be nulled. Previously, a large bi-planar coil system which produces uniform fields and field gradients was used for this purpose. Its construction presented a significant challenge, six distinct coils were wound on two 1.6 × 1.6 m 2 planes. Here, we exploit shared coil symmetries to produce coils simultaneously optimised to generate homogenous fields and gradients. We show nulling performance comparable to that of a six-coil system is achieved with this three-coil system, decreasing the strongest field component B x by a factor of 53, and the strongest gradient dB x /dz by a factor of 7. To allow the coils to be used in environments with temporally-varying magnetic interference a dynamic nulling system was developed with a shielding factor of 40 dB at 0.01 Hz. Reducing the number of coils required and incorporating dynamic nulling should allow for greater take-up of this technology. Interactions of the coils with the high-permeability walls of the MSR were investigated using a method of images approach. Simulations show a degrading of field uniformity which was broadly consistent with measured values. These effects should be incorporated into future designs.
国家哲学社会科学文献中心版权所有