首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Different Antioxidant Efficacy of Two MnII-Containing Superoxide Anion Scavengers on Hypoxia/Reoxygenation-Exposed Cardiac Muscle Cells
  • 本地全文:下载
  • 作者:Matteo Becatti ; Andrea Bencini ; Silvia Nistri
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2019
  • 卷号:9
  • 期号:1
  • 页码:1-20
  • DOI:10.1038/s41598-019-46476-2
  • 出版社:Springer Nature
  • 摘要:Oxidative stress due to excess superoxide anion ([Formula: see text]) produced by dysfunctional mitochondria is a key pathogenic event of aging and ischemia-reperfusion diseases. Here, a new [Formula: see text]-scavenging Mn II complex with a new polyamino-polycarboxylate macrocycle (4,10-dimethyl-1,4,7,10-tetraazacyclododecane-1,7-diacetate) containing 2 quinoline units (MnQ2), designed to improve complex stability and cell permeability, was compared to parental Mn II complex with methyls replacing quinolines (MnM2). MnQ2 was more stable than MnM2 (log K = 19.56(8) vs. 14.73(2) for the equilibrium Mn 2+  + L 2- , where L = Q2 and M2) due to the involvement of quinoline in metal binding and to the hydrophobic features of the ligand which improve metal desolvation upon complexation. As oxidative stress model, H9c2 rat cardiomyoblasts were subjected to hypoxia-reoxygenation. MnQ2 and MnM2 (10 μmol L -1 ) were added at reoxygenation for 1 or 2 h. The more lipophilic MnQ2 showed more rapid cell and mitochondrial penetration than MnM2. Both MnQ2 and MnM2 abated endogenous ROS and mitochondrial [Formula: see text], decreased cell lipid peroxidation, reduced mitochondrial dysfunction, in terms of efficiency of the respiratory chain and preservation of membrane potential (Δψ) and permeability, decreased the activation of pro-apoptotic caspases 9 and 3, and increased cell viability. Of note, MnQ2 was more effective than MnM2 to exert cytoprotective anti-oxidant effects in the short term. Compounds with redox-inert Zn II replacing the functional Mn II were ineffective. This study provides clues which further our understanding of the structure-activity relationships of Mn II -chelates and suggests that Mn II -polyamino-polycarboxylate macrocycles could be developed as new anti-oxidant drugs.
国家哲学社会科学文献中心版权所有