首页    期刊浏览 2024年12月14日 星期六
登录注册

文章基本信息

  • 标题:HyperFoods: Machine intelligent mapping of cancer-beating molecules in foods
  • 本地全文:下载
  • 作者:Kirill Veselkov ; Guadalupe Gonzalez ; Shahad Aljifri
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2019
  • 卷号:9
  • 期号:1
  • 页码:1-12
  • DOI:10.1038/s41598-019-45349-y
  • 出版社:Springer Nature
  • 摘要:Recent data indicate that up-to 30-40% of cancers can be prevented by dietary and lifestyle measures alone. Herein, we introduce a unique network-based machine learning platform to identify putative food-based cancer-beating molecules. These have been identified through their molecular biological network commonality with clinically approved anti-cancer therapies. A machine-learning algorithm of random walks on graphs (operating within the supercomputing DreamLab platform) was used to simulate drug actions on human interactome networks to obtain genome-wide activity profiles of 1962 approved drugs (199 of which were classified as "anti-cancer" with their primary indications). A supervised approach was employed to predict cancer-beating molecules using these 'learned' interactome activity profiles. The validated model performance predicted anti-cancer therapeutics with classification accuracy of 84-90%. A comprehensive database of 7962 bioactive molecules within foods was fed into the model, which predicted 110 cancer-beating molecules (defined by anti-cancer drug likeness threshold of >70%) with expected capacity comparable to clinically approved anti-cancer drugs from a variety of chemical classes including flavonoids, terpenoids, and polyphenols. This in turn was used to construct a 'food map' with anti-cancer potential of each ingredient defined by the number of cancer-beating molecules found therein. Our analysis underpins the design of next-generation cancer preventative and therapeutic nutrition strategies.
国家哲学社会科学文献中心版权所有