摘要:Oxidative stress has been suggested to play a role in brain damage during carbon monoxide (CO) poisoning. Severe poisoning induced by CO at 3000 ppm, but not 1000 ppm, enhances hydroxyl radical ( ˙ OH) production in the rat striatum, which might be mediated by NADPH oxidase (NOX) activation associated with Ras-related C3 botulinum toxin substrate (Rac) via cAMP signaling pathway activation. CO-induced ˙ OH production was suppressed by antagonists of angiotensin II (AngII) type 1 receptor (AT1R) and type 2 receptor (AT2R) but not an antagonist of the Mas receptor. Suppression by an AT1R antagonist was unrelated to peroxisome proliferator-activated receptor γ. Angiotensin-converting enzyme inhibitors also suppressed CO-induced ˙ OH production. Intrastriatal AngII at high concentrations enhanced ˙ OH production. However, the enhancement of ˙ OH production was resistant to inhibitors selective for NOX and Rac and to AT1R and AT2R antagonists. This indicates a different mechanism for ˙ OH production induced by AngII than for that induced by CO poisoning. AT1R and AT2R antagonists had no significant effects on CO-induced cAMP production or ˙ OH production induced by forskolin, which stimulates cAMP production. These findings suggest that the renin-angiotensin system might be involved in CO-induced ˙ OH production in a manner independent of cAMP signaling pathways.