首页    期刊浏览 2025年02月27日 星期四
登录注册

文章基本信息

  • 标题:Segment boundary detection directed attention for online end-to-end speech recognition
  • 本地全文:下载
  • 作者:Junfeng Hou ; Wu Guo ; Yan Song
  • 期刊名称:EURASIP Journal on Audio, Speech, and Music Processing
  • 印刷版ISSN:1687-4714
  • 电子版ISSN:1687-4722
  • 出版年度:2020
  • 卷号:2020
  • 期号:1
  • 页码:1-16
  • DOI:10.1186/s13636-020-0170-z
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Attention-based encoder-decoder models have recently shown competitive performance for automatic speech recognition (ASR) compared to conventional ASR systems. However, how to employ attention models for online speech recognition still needs to be explored. Different from conventional attention models wherein the soft alignment is obtained by a pass over the entire input sequence, attention models for online recognition must learn online alignment to attend part of input sequence monotonically when generating output symbols. Based on the fact that every output symbol is corresponding to a segment of input sequence, we propose a new attention mechanism for learning online alignment by decomposing the conventional alignment into two parts: segmentation—segment boundary detection with hard decision—and segment-directed attention—information aggregation within the segment with soft attention. The boundary detection is conducted along the time axis from left to right, and a decision is made for each input frame about whether it is a segment boundary or not. When a boundary is detected, the decoder generates an output symbol by attending the inputs within the corresponding segment. With the proposed attention mechanism, online speech recognition can be realized. The experimental results on TIMIT and WSJ dataset show that our proposed attention mechanism achieves comparable online performance with state-of-the-art models.
  • 关键词:Encoder-decoder ; Online recognition ; Boundary detection ; Attention mechanism ; Reinforcement learning ; Policy gradient ;
国家哲学社会科学文献中心版权所有