首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Existence of solutions for a system of singular sum fractional q -differential equations via quantum calculus
  • 本地全文:下载
  • 作者:Mohammad Esmael Samei
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2020
  • 卷号:2020
  • 期号:1
  • 页码:1-23
  • DOI:10.1186/s13662-019-2480-y
  • 出版社:Hindawi Publishing Corporation
  • 摘要:In this study, we discuss the existence of positive solutions for the system of m-singular sum fractional q-differential equations$$ \begin{gathered} D_{q}^{\alpha_{i}} x_{i} + g_{i} \bigl(t, x_), \ldots, x_{m}, D_{q}^{\gamma _)} x_), \ldots, D_{q}^{\gamma_{m}} x_{m} \bigr) \\ \quad{} +h_{i} \bigl(t, x_), \ldots, x_{m}, D_{q}^{\gamma_)} x_), \ldots, D_{q}^{\gamma_{m}} x_{m} \bigr)=0 \end{gathered} $$ with boundary conditions $x_{i}(0) = x_{i}' (1) = 0$ and $x_{i}^{(k)}(t) = 0$ whenever $t=0$, here $2\leq k \leq n-1$, where $n= [\alpha_{i}]+ 1$, $\alpha_{i} \geq2$, $\gamma_{i} \in(0,1)$, $D_{q}^{\alpha}$ is the Caputo fractional q-derivative of order α, here $q \in(0,1)$, function $g_{i}$ is of Carathéodory type, $h_{i}$ satisfy the Lipschitz condition and $g_{i} (t , x_), \ldots, x_{2m})$ is singular at $t=0$, for $1 \leq i \leq m$. By means of Krasnoselskii’s fixed point theorem, the Arzelà-Ascoli theorem, Lebesgue dominated theorem and some norms, the existence of positive solutions is obtained. Also, we give an example to illustrate the primary effects.
  • 关键词:Existence of solutions ; Caputo q -derivative ; Singularity ; Fractional q -differential equations ;
国家哲学社会科学文献中心版权所有