首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Implementation of Machine Learning Spectrum Sensing for Cognitive Radio Applications
  • 本地全文:下载
  • 作者:Mohamed El-Tarhuni ; Khaled Assaleh ; Firas Kiftaro
  • 期刊名称:Computer Science & Information Technology
  • 电子版ISSN:2231-5403
  • 出版年度:2019
  • 卷号:9
  • 期号:4
  • 页码:1-10
  • DOI:10.5121/csit.2019.90405
  • 出版社:Academy & Industry Research Collaboration Center (AIRCC)
  • 摘要:In this paper, a cognitive radio system is implemented using National Instruments (NI) Universal Software Radio Peripheral (USRP) devices. The implemented system provides a working prototype based on real data generated and collected by an experimental laboratory setup to compare the performance of spectrum sensing algorithms based on energy detection and polynomial classifier channel sensing techniques. For a sensing time interval ranging from 0.05 ms to 5ms, the experimental results show that the polynomial classifier has a better performance compared to the conventional energy detector in terms of the misclassification rate, especially at lower SNR values.
  • 关键词:Cognitive Radio; Spectrum Dynamic Access; Spectrum Sensing; Polynomial Classifier; Energy Detection; USRP
国家哲学社会科学文献中心版权所有