首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:XOR Lemmas for Resilient Functions Against Polynomials
  • 本地全文:下载
  • 作者:Eshan Chattopadhyay ; Pooya Hatami ; Kaave Hosseini
  • 期刊名称:Electronic Colloquium on Computational Complexity
  • 印刷版ISSN:1433-8092
  • 出版年度:2019
  • 卷号:2019
  • 页码:1-28
  • 出版社:Universität Trier, Lehrstuhl für Theoretische Computer-Forschung
  • 摘要:

    A major challenge in complexity theory is to explicitly construct functions that have small correlation with low-degree polynomials over F 2 . We introduce a new technique to prove such correlation bounds with F 2 polynomials. Using this technique, we bound the correlation of an XOR of Majorities with constant degree polynomials. In fact, we prove a more general XOR lemma that extends to arbitrary resilient functions. We conjecture that the technique generalizes to higher degree polynomials as well.

    A key ingredient in our new approach is a structural result about the Fourier spectrum of low degree polynomials over F 2 . We show that for any n-variate polynomial p over F 2 of degree at most d , there is a small set S [ n ] of variables, such that almost all of the Fourier mass of p lies on Fourier coefficients that intersect with S . In fact our result is more general, and finds such a set S for any low-dimensional subspace of polynomials. This generality is crucial in deriving the new XOR lemmas.

  • 关键词:Correlation Bounds ; low degree polynomials ; resilient functions ; XOR Lemmas
国家哲学社会科学文献中心版权所有