首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Uniformity of hitting times of the contact process
  • 本地全文:下载
  • 作者:Markus Heydenreich ; Christian Hirsch ; Daniel Valesin
  • 期刊名称:Latin American Journal of Probability and Mathematical Statistics
  • 电子版ISSN:1980-0436
  • 出版年度:2018
  • 卷号:XV
  • 期号:1
  • 页码:233-245
  • DOI:10.30757/ALEA.v15-11
  • 出版社:Instituto Nacional De Matemática Pura E Aplicada
  • 摘要:For the supercritical contact process on the hyper-cubic lattice startedfrom a single infection at the origin and conditioned on survival, we establish twouniformity results for the hitting times t(x), de ned for each site x as the rsttime at which it becomes infected. First, the family of random variables (t(x) 􀀀t(y))=jx􀀀yj, indexed by x 6= y in Zd, is stochastically tight. Second, for each " > 0there exists x such that, for in nitely many integers n, t(nx) < t((n + 1)x) withprobability larger than 1 􀀀 ". A key ingredient in our proofs is a tightness resultconcerning the essential hitting times of the supercritical contact process introducedby Garet and Marchand (2012).
  • 关键词:Contact process; coexistence; hitting times;
国家哲学社会科学文献中心版权所有