首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:An Efficient Twin Projection Support Vector Machine for Regression
  • 本地全文:下载
  • 作者:Xinyu Ouyang ; Nannan Zhao ; Chuang Gao
  • 期刊名称:Engineering Letters
  • 印刷版ISSN:1816-093X
  • 电子版ISSN:1816-0948
  • 出版年度:2019
  • 卷号:27
  • 期号:1
  • 页码:103-107
  • 出版社:Newswood Ltd
  • 摘要:Taking motivation from ɛ-insensitive twin supportvector regression (ɛ-TSVR) and the projection idea, this paperproposes a novel ɛ-twin projection support vector regressionmodels, called ɛ-TPSVR. The proposed ɛ-TPSVR, which isbased on ɛ-TSVR, determines the regression function through apair of nonparallel hyperplanes solved by two smaller sizedquadratic programming problems. Different from ɛ-TSVR, aprojection axis is sought for each optimization problem ofɛ-TPSVR such that the variance of the projected points isminimized. Therefore, the empirical correlation coefficientbetween each hyperplane and the projected inputs can beoptimized. The experimental results indicate that the proposedɛ-TPSVR obtains the better prediction performance than TSVRand ɛ-TSVR methods that were widely adopted.
  • 关键词:Support vector machine (SVM); Regression;analysis; Projection algorithms; Benchmark testing; ɛ;twin;support vector regression (ɛ;TSVR)
国家哲学社会科学文献中心版权所有