首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:From Weak to Strong Linear Programming Gaps for All Constraint Satisfaction Problems
  • 本地全文:下载
  • 作者:Mrinalkanti Ghosh ; Madhur Tulsiani
  • 期刊名称:Theory of Computing
  • 印刷版ISSN:1557-2862
  • 电子版ISSN:1557-2862
  • 出版年度:2018
  • 卷号:14
  • 页码:1-33
  • DOI:10.4086/toc.2018.v014a010
  • 出版社:University of Chicago
  • 摘要:We study the approximability of constraint satisfaction problems (CSPs) by linear programming (LP) relaxations. We show that for every CSP, the approximation obtained by a basic LP relaxation is at least as strong as the approximation obtained using relaxations given by c ·logn/loglogn levels of the Sherali–Adams hierarchy (for some constant c > 0) on instances of size n.
  • 关键词:constraint satisfaction problem; convex programming; linear programming
国家哲学社会科学文献中心版权所有