A series of poly(trimethylene terephthalate)- b -poly(tetramethylene glycol) (PTT-PTMEG) copolymers were synthesized by two-step melt-polycondensation. The copolymers were characterized by using Fourier transform infrared spectroscopy (FTIR), 1 H NMR spectroscopy, rheometer, differential scanning calorimetry (DSC), polarized optical microscopy (POM), thermal gravimetric analysis (TGA), and mechanical properties. The results suggest that by increasing the flexible PTMEG contents from 0% to 60 wt%, the copolymers show decreased glass transition temperatures, melting points, melt-crystallization temperatures, hardness, tensile strength, thermostability, and smaller spherulites dimensions; however it has much increased impact strength and elongation at breaking point. Compared with commercial poly(butylene terephthalate) (PBT)-type TPEE with 25 mol% flexible segments, PTT-type TPEE having 25 mol% flexible segments has a lower glass transition temperature, melting point, crystallization temperature, and much lower tensile strength although it has a much higher impact strength than that of PBT-type TPEE, and it is not suitably used as a commercial TPEE.