A benzocyclobutene (BCB) silicon (Si) based wideband antenna for millimeter wave applications is presented. The antenna consists of multilayer with one layer of BCB and the remaining three layers of Si. A patch is etched on the Si substrate above the air gap, which is excited through a slot. This architecture of slot, air gap, and patch will produce wide bandwidth by merging each one of resonances. The simulated results show that the antenna provides an S 11 - 10 dB bandwidth of 9.7 GHz (17%) starting from 51.5 GHz to 61.2 GHz around 57 GHz central frequency. The antenna provides a maximum gain of 8.9 dBi with an efficiency of 70%.