首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Soil-Landscape Modeling and Remote Sensing to Provide Spatial Representation of Soil Attributes for an Ethiopian Watershed
  • 本地全文:下载
  • 作者:Nurhussen Mehammednur Seid ; Birru Yitaferu ; Kibebew Kibret
  • 期刊名称:Applied and Environmental Soil Science
  • 印刷版ISSN:1687-7667
  • 电子版ISSN:1687-7675
  • 出版年度:2013
  • 卷号:2013
  • 页码:1-11
  • DOI:10.1155/2013/798094
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    Information about the spatial distribution of soil properties is necessary for natural resources modeling; however, the cost of soil surveys limits the development of high-resolution soil maps. The objective of this study was to provide an approach for predicting soil attributes. Topographic attributes and the normalized difference vegetation index (NDVI) were used to provide information about the spatial distribution of soil properties using clustering and statistical techniques for the 56 km 2 Gumara-Maksegnit watershed in Ethiopia. Multiple linear regression models implemented within classified subwatersheds explained 6–85% of the variations in soil depth, texture, organic matter, bulk density, pH, total nitrogen, available phosphorous, and stone content. The prediction model was favorably comparable with the interpolation using the inverse distance weighted algorithm. The use of satellite images improved the prediction. The soil depth prediction accuracy dropped gradually from 98% when 180 field observations were used to 65% using only 25 field observations. Soil attributes were predicted with acceptable accuracy even with a low density of observations (1-2 observations/2 km 2 ). This is because the model utilizes topographic and satellite data to support the statistical prediction of soil properties between two observations. Hence, the use of DEM and remote sensing with minimum field data provides an alternative source of spatially continuous soil attributes.

国家哲学社会科学文献中心版权所有