摘要:Coupled light-matter modes supported by plasmonic metasurfaces can be combined with topological principles to yield subwavelength topological valley states of light. This study gives a systematic presentation of the topological valley states available for lattices of metallic nanoparticles (NPs): all possible lattices with hexagonal symmetry are considered as well as valley states emerging on a square lattice. Several unique effects that have yet to be explored in plasmonics are identified, such as robust guiding, filtering, and splitting of modes, as well as dual-band effects. These are demonstrated by means of scattering computations based on the coupled dipole method that encompass full electromagnetic interactions between NPs.