首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Dynamic Complexity of Parity Exists Queries
  • 本地全文:下载
  • 作者:Nils Vortmeier ; Thomas Zeume
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:152
  • 页码:1-16
  • DOI:10.4230/LIPIcs.CSL.2020.37
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Given a graph whose nodes may be coloured red, the parity of the number of red nodes can easily be maintained with first-order update rules in the dynamic complexity framework DynFO of Patnaik and Immerman. Can this be generalised to other or even all queries that are definable in first-order logic extended by parity quantifiers? We consider the query that asks whether the number of nodes that have an edge to a red node is odd. Already this simple query of quantifier structure parity-exists is a major roadblock for dynamically capturing extensions of first-order logic. We show that this query cannot be maintained with quantifier-free first-order update rules, and that variants induce a hierarchy for such update rules with respect to the arity of the maintained auxiliary relations. Towards maintaining the query with full first-order update rules, it is shown that degree-restricted variants can be maintained.
  • 关键词:Dynamic complexity; parity quantifier; arity hierarchy
国家哲学社会科学文献中心版权所有