首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:On Deterministic Linearizable Set Agreement Objects
  • 本地全文:下载
  • 作者:Felipe de Azevedo Piovezan ; Vassos Hadzilacos ; Sam Toueg
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:153
  • 页码:1-15
  • DOI:10.4230/LIPIcs.OPODIS.2019.16
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:A recent work showed that, for all n and k, there is a linearizable (n,k)-set agreement object O_L that is equivalent to the (n,k)-set agreement task [David Yu Cheng Chan et al., 2017]: given O_L, it is possible to solve the (n,k)-set agreement task, and given any algorithm that solves the (n,k)-set agreement task (and registers), it is possible to implement O_L. This linearizable object O_L, however, is not deterministic. It turns out that there is also a deterministic (n,k)-set agreement object O_D that is equivalent to the (n,k)-set agreement task, but this deterministic object O_D is not linearizable. This raises the question whether there exists a deterministic and linearizable (n,k)-set agreement object that is equivalent to the (n,k)-set agreement task. Here we show that in general the answer is no: specifically, we prove that for all n ≥ 4, every deterministic linearizable (n,2)-set agreement object is strictly stronger than the (n,2)-set agreement task. We prove this by showing that, for all n ≥ 4, every deterministic and linearizable (n,2)-set agreement object (together with registers) can be used to solve 2-consensus, whereas it is known that the (n,2)-set agreement task cannot do so. For a natural subset of (n,2)-set agreement objects, we prove that this result holds even for n = 3.
  • 关键词:Asynchronous shared-memory systems; consensus; set agreement; deterministic objects
国家哲学社会科学文献中心版权所有