期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2020
卷号:117
期号:5
页码:2282-2287
DOI:10.1073/pnas.1900015117
出版社:The National Academy of Sciences of the United States of America
摘要:Biomimetic superhydrophobic surfaces display many excellent underwater functionalities, which attribute to the slippery air mattress trapped in the structures on the surface. However, the air mattress is easy to collapse due to various disturbances, leading to the fully wetted Wenzel state, while the water filling the microstructures is difficult to be repelled to completely recover the air mattress even on superhydrophobic surfaces like lotus leaves. Beyond superhydrophobicity, here we find that the floating fern, Salvinia molesta , has the superrepellent capability to efficiently replace the water in the microstructures with air and robustly recover the continuous air mattress. The hierarchical structures on the leaf surface are demonstrated to be crucial to the recovery. The interconnected wedge-shaped grooves between epidermal cells are key to the spontaneous spreading of air over the entire leaf governed by a gas wicking effect to form a thin air film, which provides a base for the later growth of the air mattress in thickness synchronously along the hairy structures. Inspired by nature, biomimetic artificial Salvinia surfaces are fabricated using 3D printing technology, which successfully achieves a complete recovery of a continuous air mattress to exactly imitate the superrepellent capability of Salvinia leaves. This finding will benefit the design principles of water-repellent materials and expand their underwater applications, especially in extreme environments.