首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Genome-scale transcriptional dynamics and environmental biosensing
  • 本地全文:下载
  • 作者:Garrett Graham ; Nicholas Csicsery ; Elizabeth Stasiowski
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2020
  • 卷号:117
  • 期号:6
  • 页码:3301-3306
  • DOI:10.1073/pnas.1913003117
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Genome-scale technologies have enabled mapping of the complex molecular networks that govern cellular behavior. An emerging theme in the analyses of these networks is that cells use many layers of regulatory feedback to constantly assess and precisely react to their environment. The importance of complex feedback in controlling the real-time response to external stimuli has led to a need for the next generation of cell-based technologies that enable both the collection and analysis of high-throughput temporal data. Toward this end, we have developed a microfluidic platform capable of monitoring temporal gene expression from over 2,000 promoters. By coupling the “Dynomics” platform with deep neural network (DNN) and associated explainable artificial intelligence (XAI) algorithms, we show how machine learning can be harnessed to assess patterns in transcriptional data on a genome scale and identify which genes contribute to these patterns. Furthermore, we demonstrate the utility of the Dynomics platform as a field-deployable real-time biosensor through prediction of the presence of heavy metals in urban water and mine spill samples, based on the the dynamic transcription profiles of 1,807 unique Escherichia coli promoters.
  • 关键词:high-throughput microfluidics ; dynamics ; E. coli transcriptomics ; explainable AI ; biosensor
国家哲学社会科学文献中心版权所有