期刊名称:International Journal of Advanced Robotic Systems
印刷版ISSN:1729-8806
电子版ISSN:1729-8814
出版年度:2020
卷号:17
期号:1
页码:1-11
DOI:10.1177/1729881419894417
出版社:SAGE Publications
摘要:According to the robot’s dynamics, a high performance algorithm based on dynamic surface control is introduced to track desired trajectory, and simulations are conducted on a selective compliance assembly robot arm-type manipulator to verify the algorithm. The traditional dynamic surface control is designed based on dynamic model, which requires exact model information. Due to the model uncertainty and complex environments, the tracking performance of the controller can be significantly decreased. Therefore, a model-free fuzzy adaptive dynamic surface controller is designed, by adopting a fuzzy system with Lyapunov self-adaptation law. The new controller efficiently improves the dynamic quality. The simulation results prove that the designed model-free controller ensures that all the states and signals of the closed-loop system are bounded, the system has a faster response speed and smaller steady-state error comparing with the traditional dynamic surface control using the selective compliance assembly robot arm model, and the tracking error converge to a very small scale. Besides, the proposed algorithm can track the desired trajectory with high performance without the prior knowledge of specific parameters from the experimental manipulator, which simplifies the complexity of building the control system.
关键词:Trajectory tracking; dynamic surface control; fuzzy control; adaptive control
其他关键词:Trajectory tracking ; dynamic surface control ; fuzzy control ; adaptive control