摘要:Disposal of mining wastes (tailings) is one of the most severe issues related to groundwater contamination. Therefore, a properly selected disposal site helps to prevent the leakage of dissolved materials in the tailings to groundwater, especially in the karstic area. Where the karstic environment is one of the challenges facing groundwater environmental and engineering issues, for instance, groundwater exploration, vulnerability assessment, and hazard estimation. In this study, the resistivity method with a high-resolution surface data survey was carried out to investigate the pond location selection for mining tailings disposal at El Mochito mine site, northwest Honduras. The results of the two-dimensional (2-D) inversion for sixteen surveyed lines revealed that many low resistivity zones. These zones are related to water/clay-bearing zones that are structurally weak. From lines 8-12, the limestone underneath the surface is the most compact, and this is the best location in the survey area for tailings pond construction. The resistivity method has provided insight into the subsurface information and locating hydraulically conductive zones, so it can be useful for selecting the site of mining tailings.
其他摘要:Disposal of mining wastes (tailings) is one of the most severe issues related to groundwater contamination. Therefore, a properly selected disposal site helps to prevent the leakage of dissolved materials in the tailings to groundwater, especially in the karstic area. Where the karstic environment is one of the challenges facing groundwater environmental and engineering issues, for instance, groundwater exploration, vulnerability assessment, and hazard estimation. In this study, the resistivity method with a high-resolution surface data survey was carried out to investigate the pond location selection for mining tailings disposal at El Mochito mine site, northwest Honduras. The results of the two-dimensional (2-D) inversion for sixteen surveyed lines revealed that many low resistivity zones. These zones are related to water/clay-bearing zones that are structurally weak. From lines 8-12, the limestone underneath the surface is the most compact, and this is the best location in the survey area for tailings pond construction. The resistivity method has provided insight into the subsurface information and locating hydraulically conductive zones, so it can be useful for selecting the site of mining tailings.