首页    期刊浏览 2025年02月28日 星期五
登录注册

文章基本信息

  • 标题:New Proposed Fusion between DCT for Feature Extraction and NSVC for Face Classification
  • 本地全文:下载
  • 作者:B. Nassih ; M. Ngadi ; A. Amine
  • 期刊名称:Cybernetics and Information Technologies
  • 印刷版ISSN:1311-9702
  • 电子版ISSN:1314-4081
  • 出版年度:2018
  • 卷号:18
  • 期号:2
  • 页码:89-97
  • DOI:10.2478/cait-2018-0030
  • 出版社:Bulgarian Academy of Science
  • 摘要:Feature extraction is an interactive and iterative analysis process of a large dataset of raw data in order to extract meaningful knowledge. In this article, we present a strong descriptor based on the Discrete Cosine Transform (DCT), we show that the new DCT-based Neighboring Support Vector Classifier (DCT-NSVC) provides a better results compared to other algorithms for supervised classification. Experiments on our real dataset named BOSS, show that the accuracy of classification has reached 99%. The application of DCT-NSVC on MIT-CBCL dataset confirms the performance of the proposed approach.
  • 关键词:Supervised learning; DCT; NSVC; shape recognition; SVM; feature; extraction
国家哲学社会科学文献中心版权所有