首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:Machine Learning in Network Security Using KNIME Analytics
  • 本地全文:下载
  • 作者:Munther Abualkibash
  • 期刊名称:International Journal of Network Security & Its Applications
  • 印刷版ISSN:0975-2307
  • 电子版ISSN:0974-9330
  • 出版年度:2019
  • 卷号:11
  • 期号:5
  • 页码:1-13
  • DOI:10.5121/ijnsa.2019.11501
  • 出版社:Academy & Industry Research Collaboration Center (AIRCC)
  • 摘要:Machine learning has more and more effect on our every day’s life. This field keeps growing and expanding into new areas. Machine learning is based on the implementation of artificial intelligence that gives systems the capability to automatically learn and enhance from experiments without being explicitly programmed. Machine Learning algorithms apply mathematical equations to analyze datasets and predict values based on the dataset. In the field of cybersecurity, machine learning algorithms can be utilized to train and analyze the Intrusion Detection Systems (IDSs) on security-related datasets. In this paper, we tested different machine learning algorithms to analyze NSL-KDD dataset using KNIME analytics.
  • 关键词:Network Security; KNIME; NSL-KDD; and Machine Learning
国家哲学社会科学文献中心版权所有