首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:Improved bounds for the sunflower lemma
  • 本地全文:下载
  • 作者:Ryan Alweiss ; Shachar Lovett ; Kewen Wu
  • 期刊名称:Electronic Colloquium on Computational Complexity
  • 印刷版ISSN:1433-8092
  • 出版年度:2019
  • 卷号:2019
  • 页码:1-13
  • 出版社:Universität Trier, Lehrstuhl für Theoretische Computer-Forschung
  • 摘要:

    A sunflower with r petals is a collection of r sets so that the intersection of each pair is equal to the intersection of all. Erd\H{o}s and Rado proved the sunflower lemma: for any fixed r , any family of sets of size w , with at least about w w sets, must contain a sunflower. The famous sunflower conjecture is that the bound on the number of sets can be improved to c w for some constant c . In this paper, we improve the bound to about ( log w ) w . In fact, we prove the result for a robust notion of sunflowers, for which the bound we obtain is tight up to lower order terms.

  • 关键词:Robust sunflower lemma ; Sunflower conjecture ; sunflower lemma
国家哲学社会科学文献中心版权所有