摘要:Proteome profiling based on two-dimensional (2D)-DIGE might be a useful tool for investigating drug-like compounds and the mode of action of drugs. However, obtaining data for profiling requires high labor costs, and it is difficult to control the reproducibility of spot positions because 2D-DIGE usually requires large-size glass plates and spot alignments are greatly affected by the quality of DryStrips and polyacrylamide gels (PAGs). Therefore, we have developed a novel platform by employing small size DryStrips and PAGs, and an image analysis strategy based on dual correction of spot alignment and volume. Our system can automatically detect a large number of consistent spots through all images. Cytosol fractions of HeLa cells treated with dimethyl sulfoxide (DMSO) or bortezomib were analyzed, 1697 consistent spots were detected, and 775 of them were significantly changed with the treatment. Deviations between different days and lot sets of DryStrips and PAGs were investigated by calculating the correlation coefficients. The mean values of the correlation between days and lot sets were 0.96 and 0.94, respectively. Clustering analysis of all the treatment data clearly separated the DMSO or bortezomib treated groups beyond day deviations. Thus, we have succeeded in developing an easy-to-handle 2D-DIGE system that can be a novel proteome profiling platform.