摘要:We study dynamic planar point location in the External Memory Model or Disk Access Model (DAM). Previous work in this model achieves polylog query and polylog amortized update time. We present a data structure with O(log_B^2 N) query time and O(1/B^(1-epsilon) log_B N) amortized update time, where N is the number of segments, B the block size and epsilon is a small positive constant, under the assumption that all faces have constant size. This is a B^(1-epsilon) factor faster for updates than the fastest previous structure, and brings the cost of insertion and deletion down to subconstant amortized time for reasonable choices of N and B. Our structure solves the problem of vertical ray-shooting queries among a dynamic set of interior-disjoint line segments; this is well-known to solve dynamic planar point location for a connected subdivision of the plane with faces of constant size.
关键词:point location; data structures; dynamic algorithms; computational geometry